If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40n^2+36n=0
a = 40; b = 36; c = 0;
Δ = b2-4ac
Δ = 362-4·40·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-36}{2*40}=\frac{-72}{80} =-9/10 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+36}{2*40}=\frac{0}{80} =0 $
| 5x=3x40 | | 9x=6x-36-3x | | 32/56=8/m | | -2(8x-1)=(3x+4) | | 4g+10=2g-12 | | 4=2/3m+8 | | Y=10(1+0)^t | | 43n-90n=94 | | 8(7+c)=7(c-9) | | 5w=-40 | | 16t^2+32t-69=0 | | 40x+20x=900 | | 1+2/3y=27 | | -5(x-10)=10 | | 5x+-12=3x+6 | | K^2+10k+17=0 | | 6=10+12n | | h=A/3A= | | 2(x+4)-(8x-9)=-7x | | 2(x+4)-5=2×+3 | | -3(y-7)=-9 | | 10h+4=-2(2-3h) | | 7=1/3+x | | 3x+6=5x+-12 | | X-5=-x+9 | | 2x+7-3=3x | | 54.15=15.75+3.5x | | S=60x24+10 | | 3x+6+5x+-12=90 | | 3(5x-4)=22x | | 15-n=-8 | | -3(r+13)=-6 |